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On the vorticity dynamics of a turbulent jet in a 
crossflow 

By R. I. SYKES, W. S. LEWELLEN AND S. F. PARKER 
Aeronautical Research Associates of Princeton, Inc., P.O. Box 2229, 

50 Washington Road, Princeton, New Jersey 08540 

(Received 26 March 1985 and in revised form 7 November 1985) 

We present numerical solutions of the fully three-dimensional flow of a round, 
turbulent jet emitted normal to a uniform free stream. Comparisons with available 
laboratory data and comparison between different numerical grid resolutions are used 
to demonstrate the quality of the simulation. Examination of the detailed flow 
pattern within a computational domain, which extends 15 jet diameters from the 
source allows us to follow the vorticity dynamics in the transition from an initially 
vertical jet to a wake with a vortex pair essentially aligned with the free stream. The 
transition is presented as a function of the ratio of the jet exit velocity to free stream 
velocity. For large velocity ratios, the source of the streamwise vorticity in the vortex 
pair can be readily traced back to the original streamwise vorticity in the sides of 
the vertical jet. 

1. Introduction 
The introduction of a jet of fluid transversely into a moving stream is a basic 

configuration which finds application in many engineering fields, e.g. discharge of 
effluent in the atmosphere or ocean and VTOL aerodynamics. Several experimental 
studies (e.g. Keffer & Baines 1963; Kamotani & Greber 1972; Moussa, Trischka & 
Eskinazi 1977; Andreopoulos & Rodi 1984) have revealed some of the essential 
features of the dynamics, which are fully three-dimensional and consequently difficult 
to visualize. The most striking feature is the transition from an initially vertical jet 
through a bending phase during which the jet becomes parallel with the free stream 
and forms a vortex pair aligned with the flow. The details of the transition are 
complicated and not well understood, and we hope to shed some further light on the 
process in this paper. 

We shall present results from numerical calculations which complement the 
previously mentioned experimental results. We will treat the numerical model, which 
allows for very detailed examination of the flow field, in much the same way one would 
a laboratory model. The principal result from the numerical model will be a complete 
picture of the flow. This detailed view has not been available from the relatively 
low-resolution numerical results previously published (Patankar, Basu & Alpay 1977 ; 
Chien & Schetz 1975; Demuren 1983). 
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2. Numerical model 
We take the incompressible, Navier-Stokes equations in the form 

where Ut is the velocity vector, P the dynamic pressure, and rij represents the stress 
tensor. We consider high-Reynolds number flows, so that rij is the Reynolds stress, 
and U, is the average velocity. 

We use a quasi-equilibrium version of the Reynolds-stress closure model described 
by Lewellen (1977) to  obtain the stresses in (2.1); this model is very similar to the 
level -2.5 model of Mellor & Yamada (1974). Specifically, we use a dynamic equation 
to  predict the turbulent kinetic energy in the form 

a42 aq2  au, a aq2 bq3 

at 9 axj ax* ax, ax, A 
-+ U . -  = 27. . -+vc-qA--2--- ,  

- 
where q2 = u; u;, i.e. twice the turbulent energy (the prime denotes a fluctuation about 
the mean value, and the overbar is the averaging operator), and A is a turbulence 
lengthscale. 

The Reynolds stresses are modelled as 

and the empirical constants vc and 6 are set at 0.3 and 0.125 respectively. The 
lengthscale A is determined by the geometry of the problem, and in the results 
presented here we set 

A = 0.25 D +0.025 r ,  (2 .5)  

where D is the diameter of the jet source and r is the distance from the centre of the 
source. The coefficients were chosen to give a good fit to the prediction for the straight 
jet.%quation (2.5) is a very crude estimate, since we can not expect the scale to behave 
as simply in a complex three-dimensional flow ; however, we believe it is adequate 
to  simulate the essential features of the bending phase of the jet evolution. 

I n  addition to the momentum equations, we also calculate a passive scalar field 
from the conservation equation 

where the scalar flux is modelled as 
qA ac 

J 3 axj F. = --, 

The above equations are discretized onto a grid using centred spatial differencing 
on a non-uniform mesh and leapfrog time-differencing. The difference equations are 
very similar to those used by Mason & Sykes (1979) ; the absolutely conserving scheme 
of Piacsek & Williams (1970) is used to represent the advection terms, and the 
diffusive terms are approximated with the DuForb-Frankel scheme. The Poisson 
equation for the pressure is solved using the direct technique due to Farnell (1980). 
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An additional numerical technique was employed to obtain the steady-state 
solution as quickly as possible. The effective timestep was made a function of space, 
so that it could increase downstream from the jet as the streamwise gridlength (and 
hence, the associated Courant limit) increased. It proved possible to use the direct 
Poisson solver, provided that the timestep was a separable function of the three 
spatial coordinates. In  the runs reported here, the strictest timestep criterion was set 
by the Courant condition in the fine mesh at  the jet exit, but this was allowed to 
increase in proportion to the local streamwise grid length up to a factor of 6 above 
the minimum condition. This allowed steady calculations to be made with 500 
timesteps, rather than the 1500 steps using the small timestep everywhere. 

Boundary conditions on the model were as follows: 

Inflow boundary x = XI 
U = U , ,  V = W = C = q 2 = 0 ;  

Outflow boundary x = X, 

--- - 0;  
a v  aw ac a42 
ax ax ax ax 

- -  -=- _ -  

where t represents the time level, and B represents the boundary point; 

( c )  Lower boundary z = 0 

u= v = o  
w =  w, 
c = c, 
q2 = q; 

w = o  

where D is the jet exhaust diameter ; 

(d) Upper boundary z = 2, 
w = o ,  

( e )  Lateral boundaries y = 0, yZ 
v=o ,  

- 0. 
au aw ac aq2 
aY aY aY aY 

- - 

We note that the outflow boundary condition is a very crude type of open condition 
(cf. Orlanski 1976); however, since virtually all such conditions give a zero-slope 
condition in the steady state, it is of little consequence provided that it does not 
disrupt the transient unduly. The simple condition adequately handles the passage 
of the jet. 
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Run x, X, Y2 Z, Nx Ny N z  

R2 -3  16 4 4.9 39 18 30 
R4 -3  16 8 12 39 20 30 
R8 -3  16 14 20 39 20 30 
R8: High resolution -3  16 14 20 66 35 50 

TABLE 1. 
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FIQURE 1. Dimensionless scalar field in the plane y = 0 for R = 2. 
Contour interval 0.1. 
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FIGURE 2. Streamwise velocity component in the plane y = 0 for R = 2. 

Contour interval 0.1, negative values shown dashed. 

Furthermore, we do not treat the lower surface as true wall outside the jet-exhaust 
region; instead, i t  is a stress-free wall. This is because a real wall introduces a local 
boundary layer, which needs to be resolved by the numerical mesh, and since our 
main interest is in jets remote from a wall, we have not attempted to model this region 
accurately. 
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3. Results 
Our ultimate objective in the development of this numerical model will be a better 

understanding of plumes from tall stacks in the atmosphere ; hence we only consider 
relatively large jet exit ratios, Wo/Uo; in fact, we present results for Wo/Uo = 2, 4, 
and 8. This is the justification for our simple treatment of the lower boundary. Table 
1 shows the numerical parameters for four calculations ; note that the only physical 
parameters are the inflow velocity U, and the diameter D, which we can take to define 
the scales of velocity and length, and henceforth set them to unity. 

We first consider the flow with W, = 2. This is the largest ratio examined by 
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data. 
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FIGURE 6. Scalar field at y = 0; (a) R = 4;  (a) 8. Contour interval 0.1. 

Andreopoulos & Rodi (1984), and there is evidence that the lower boundary does play 
a role but it is not dominant. Figure 1 shows a contour plot of the scalar field in the 
plane of symmetry. The trajectory of the maximum concentration shows a rapid rise 
to about z = 2 at x = 2, whereafter the jet rises very slowly, reaching z = 2.5 at 
x = 10. A similar plot in figure 2 for the x-component of velocity shows reversed flow 
immediately behind the jet ; this is consistent with laboratory experiments which 
describe the initial jet as acting like a solid cylinder around which the free stream 
separates. There is some slight acceleration of the flow in the bending-over region, 
but the downstream flow is completely dominated by the wake effect of the 
slow-moving fluid entrained in the lee of the jet. 

Transverse cross-sections of the scalar at x = 6 (figure 3) show a strong impact on 
the lower boundary, and relatively circular contours near the centre of the jet. The 
secondary-flow vectors at x = 6 are shown in figure 4, where the vortex pair system 
is clearly visible. The vortex centred at x = 1, z = 1.5 is slightly below and outside 
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FIGURE 9. Flow vectors for R = 8: (a) horizontal plane, z = 0; (a) vertical plane, y = 0. 

40 1 

that identified in figure 6 ( b )  of Andreopoulos & Rodi, but the velocity magnitudes 
are very similar. 

Detailed cross-sections of streamwise velocity component, scalar concentration, 
and turbulence energy are compared with the experimental results in figures 5 (u-c). 
The experimental data for the scalar field are from Andreopoulos (1983). The 
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FIQURE 10. Contour fields for the high-resolution R = 8 integration: (a) Scalar field at y = 0; ( b )  
Streamwise velocity component at x = 6.5. Contours correspond to figures 6 ( b )  and 8 ( b ) .  

agreement is not precise, but this must be due in part to the treatment of the lower 
boundary. The main discrepancy is in the value of q2 near the lower boundary, which 
we overpredict. However, there is good agreement on the profile shapes and 
magnitudes away from the wall. 

Figure 6 shows the scalar field in the plane of symmetry from the two runs with 
W, = 4 and 8. Comparison with the trajectories for the scalar maxima of Kamotani 
t Greber (1972) shows very good agreement. Transverse sections of the scalar field 
are shown in figure 7, and compare favourably with the laboratory measurements 
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FIGURE 11. Perspective plots of the successive positions of a ring released at the jet exit: (a) 
R = 2;  (a) 4; (c) 8. 
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in terms of the general size of the plume. The tendency toward splitting of the plume 
with higher exit velocity is apparent in figure 7, although the laboratory data show 
more difference between the two flows. Detailed comparison with the experiment is 
not warranted because the constant-density assumption utilized in the model is not 
appropriate for the early stages of the laboratory jet. 

The x-component of velocity for the cases R = 4 and R = 8 are shown for transverse 
cross-section in figure 8. With R = 4, the velocity-defect region clearly dominates the 
downstream development of the jet, although there is a trace of higher-speed fluid 
above and to  the sides. However, at R = 8 the transverse section at x = 15 shows 
significant regions of high-speed fluid which has been swept around into the vortices. 

Some detail of the flow near the jet exit for the case R = 8 are illustrated by the 
velocity-vector plot sin the horizontal and vertical planes ( z  = 0 and y = 0 respectively) 
shown in figure 9. The horizontal section shows a pattern typical of separated flow 
around a solid cylinder with acceleration around the sides and a reversed-flow region 
extending roughly 1.5 diameters downstream. However, the vertical section shows 
significant upward velocity in the lee of the jet, indicating convergence into the wake; 
this is the entrainment mechanism which brings environmental fluid into the jet. 

One high-resolution integration was made to  check numerical accuracy for these 
flows; the details are given in table 1 which shows an increase of roughly 75 % in the 
number of grid points in each direction for the case with R = 8. The scalar field in 
the plane of symmetry, and the transverse section of the streamwise velocity 
component are shown in figure 10: The contour plots are very similar to the 
low-resolution ; apart from a slightly lower rise in the high-resolution case, differences 
are limited to a few percent a t  most. We can therefore have confidence in the 
numerical results as accurate solutions of the differential system described in the 
previous section. 

As we mentioned previously, a major feature of a jet in a crossflow is the production 
of the vortex-pair system in the bending-over phase. The numerical solutions 
obtained above provide an opportunity for detailed examination of the flow, and in 
addition to the Eulerian cross-sectional plots, we have calculated particle trajectories 
through the flow to give some Lagrangian information. The simplest description of 
the initial jet is a vortex cylinder issuing vertically from the lower boundary, and 
in order to track the evolution of this vorticity, we have followed the trajectory of 
a ring of fluid particles which starts slightly above the boundary of the jet nozzle. 
Successive positions of the ring are shown in figure 11 for all three exit velocity ratios. 
All three flows show the same general distortion of the ring, viz. the sides of the ring 
are brought down below t,he middle part in the early stage of the bending-over phase. 
Only the R = 8 case shows a relatively undistorted ring more than one diameter from 
the nozzle. 

I n  contrast to the particle trajectories, figure 12 shows vortex lines from the three 
flows which have been drawn by calculating trajectories in the three-dimensional 
vector vorticity field. The trajectories have been drawn in regions of significant 
vorticity, so that they illustrate the major vorticity features in the bent-over jet. 
There are many differences between the vortex lines, and the Lagrangian distortions 
of the ring in figure 11, and there are two reasons for the differences. First, the 
horizontal ring used as the initial condition for the particle trajectories is not a vortex 
ring; this is most clearly illustrated in the R = 2 vortex ring near the source, which 
shows the vertical component of vorticity in the sides of the ring due to lateral shear 
between the jet and the free-stream. The relative importance of the initial vertical 
component decreases with increasing R.  The second factor causing the difference 
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FIQURE 12. Perspective plots of vortex lines in the jet: (a) R = 2;  (a) 4; ( e )  8. 

between the ring distortions and the vortex lines is diffusion, which is certainly 
important in these flows. 

Using figures 11 and 12, we can gain insights into the dynamics of the jet flows. 
The highest velocity ratio, R = 8, is perhaps the simplest to understand, since this 
shows the greatest similarity between the vortex lines and the particle trajectories. 
The main difference is that the vortex lines are strongly stretched in the streamwise 
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FIGURE 13. Vorticity field at z = 10 for the R = 8 jet: (a) transverse component, maximum 
vector of 0.40; ( b )  streamwise component, contour interval of 0.1. 

direction. However, both fields show the loop bent down at the sides, and this can 
be seen more clearly in the transverse section of the vorticity field shown in figure 
13. The transverse component is comparable in magnitude with the streamwise 
component, and has the same loop structure as the ring trajectory of figure 11. It 
seems likely that diffusion is responsible for the alignment of vortex lines in the stream 
direction, since the particle trajectories do not show evidence of stretching in that 
direction. Rather, diffusion reduces the transverse component in the ends of the loop 
more than the middle, which is undergoing lateral stretching as fluid is rotated 
outward and downward by the streamwise vortices. Furthermore, the lateral 
gradients of the streamwise velocity component are reduced by this diffusive effect, 
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FIGURE 14. Vorticity field at 2 = 10 for the R = 2 jet: (a )  transverse component, maximum 

vector of 0.26; ( b )  streamwise component, contour internal of 0.05. 

which consequently reduces the streamwise separation of the particles while increasing 
the streamwise tendency of the vorticity vector. For this flow we therefore have a 
simple picture of vortex development as an initially horizontal ring which rises more 
rapidly in the centre and moves downstream, producing a simple loop containing 
streamwise vorticity in the sides. Thus, the vortex pair is really no more than the 
original streamwise vorticity in the sides of the jet, and the transverse component 
is diffused away in the ends of the loop, but is still significant in the central region. 

The lower velocity ratios present a more complex picture, as the initial vertical 
vorticity component becomes more important. It seems likely that the surface 
boundary condition will play an important role in this case, but we presume that if 
the boundary layer was much thinner than the jet diameter on a non-slip lower 
surface, then the dynamics would not be changed. In  the R = 2 case, we see that the 
initially tilted vortex ring has its vertical component strengthened rapidly to become 
an almost-vertical loop intersecting the lower boundary. We interpret the large 
vertical component as arising in the wake via the shedding of vertical vorticity as 
the flow ‘separates’ behind the jet, and the subsequent vertical stretching as the 
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FIGURE 15. For caption see facing page. 
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FIGURE 15. Horizontal cross-section at 2 = 2 for the R = 8 jet. (a) Streamwise vorticity 
component o1 ; (b )  vorticity production term P; (c) vorticity diffusion term, D.  

wake is entrained upward with the jet. This vertical component remains in the 
transverse vorticity to dominate the loop structure shown in the particle trajectories. 
Thus, figure 14 shows that the transverse vorticity forms a simple ring which is not 
diffused as rapidly at the ends as in the R = 8 case. The streamwise component is 
still important for R = 2, but i t  no longer appears as a simple vortex pair. The relative 
weakness of the streamwise vorticity is presumably responsible for the dominance 
of diffusion in the scalar field for R = 2, which prevents the bifurcation of the plume. 

We can provide further clarification of the vorticity dynamics by examining the 
details of the terms in the vorticity equation, i.e. 

DO 
Dt 
- = (O'V) u+ D(w) ,  

where w = V x U is the vorticity, and D(w)  represents the diffusive term. We are 
interested mainly in the streamwise-component of vorticity, and therefore we shall 
look at P = ( 0 . V )  U,,  and D = D,(o) at several locations in the jet. 

Figure 15 shows w1 and the production and diffusion terms a short distance above 
the jet exit. The diffusion term is clearly dominant in the central portion of the 
vorticity distribution, and the production term is mainly a distorting effect. The 
production is mostly due to the acceleration of the background horizontal flows 
around the relatively stagnant jet; this produces vortex stretching on the upwind 
side and a corresponding enhancement of the vorticity, and the opposite effect 
downstream. However, the stretching terms are only about half the magnitude of 
the diffusion term at this stage. 

As the jet bends through 4 5 O ,  the dynamical balance is illustrated in figure 16. Here 
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FIQURE 16. For caption see facing page. 
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FIGURE 16. As figure 15, but a vertical section at x = 3. 

the production term is consistently of opposite sign to  the vorticity, and is therefore 
reducing its magnitude along with the diffusion term, which has a similar magnitude. 
The production term is centred inside and slightly above the centre of the vorticity 
distribution, and it prevents vorticity diffusion into the middle of the jet. 

Further downstream a t  z = 10, figure 17 shows that diffusive effects are still 
dominant, while the production term is tending to strengthen the vortex near the 
central axis and reduce i t  further out. The mechanism for vorticity production here 
in thP tiirninlr nf rrnqn-qtwam vnrtioitv hxr the lateral velnoitv phonr hiit tho ef fod 

is relatively weak. 
From the preceding analysis of the vorticity dynamics, we conclude that the 

principal features of the flow are a result of injection of vorticity by the jet and 
subsequent diffusion of that  vorticity. Inertial distortion of the vorticity field is not 
negligible, but i t  is small compared to diffusion, and does not produce any qualitative 
change in the streamwise vorticity. We have examined the highest-velocity-ratio case 
here and this flow showed the strongest inertial effects. Thus we expect the role of 
diffusion to dominate vorticity production throughout the range of velocity ratios 
considered. 

4. Concluding remarks 
The numerical solutions presented herein for the jet in a crossflow have provided 

insight into the dynamics of this three-dimensional flow. We have first compared our 
numerical results with laboratory data and obtained good qualitative agreement and 
reasonable quantitative agreement on most features. A further numerical check by 

14 FLY 168 



412 R. I .  Sykes, W .  S. Lewellen and S. F .  Parker 

-8  - 6  -4  -2  0 2 4 6 8 
Y l D  

10 

z 
i i 8  

6 

4 

2 

0 

- 8  - 6  - 4  - 2  0 2 4 6 8 
Y l D  

FIQURE 17. Vertical section at x = 10 for the R = 8 jet. Streamwise vorticity component is 
shown in figure 14(b). (a) Vorticity production term P ;  ( b )  vorticity diffusion term D. 
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means of a higher-resolution integration has given us confidence that we have a good 
numerical description of the flow field. 

Examination of the flow has shown the development of the initial circular jet as 
it wraps around the slow-moving fluid which is entrained from the wake of the early 
part of the jet. For large exit-velocity ratios, this three-dimensional wrapping process 
distorts the initial rings of azimuthal vorticity into an apparent pair of horizontal 
line vortices by folding the sides downward under the action of the streamwise 
vorticity. The latter originates in the sides of the jet at the source, and dominates 
the sides of the jet where the transverse vorticity is diffused away. For lower velocity 
ratios (R < 4), the vertical component of vorticity at the source is important. 

The dominance of diffusion over production in the vorticity equation suggests that 
the flow can be represented, at least qualitatively, by a series of vortex rings emitted 
from the jet source. The rings are advected and diffused, but as long as we can ignore 
the vorticity production terms they remain aligned in a horizontal plane. As the rings 
become diffused sufficiently for the free-stream advection to be larger than the 
induced velocity of the rings, the effects of the transverse components of vorticity 
in the rings are largely cancelled by the interaction between neighbouring rings. This 
gives the series of rings the appearance of a streamwise pair of line vortices. 

This work was supported by the Electric Power Research Institute with G. R. Hilst 
as project manager. 
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